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Abstract

Traditional computers are able to execute operations only with finite numbers. Operations with infinite and infinitesimal quantities could not be realized. Thus, situations where the usage of infinite or infinitesimal quantities is required are studied only theoretically. In this paper, a new positional system with infinite radix proposed recently in [Sergeyev] is discussed. This system allows one to write down finite, infinite, and infinitesimal numbers as particular cases of a unique framework and to realize calculations at a new calculating device – Infinity Computer. Thus the problem of infinity is considered from a new – applied – point of view. The new approach both gives possibilities to execute numerical calculations of a new type and simplifies fields of mathematics where usage of infinity and/or infinitesimals is necessary. In this paper, we make a few remarks on philosophical (and physical) foundations of the new approach and give some illustrative examples.

1. Finite possibilities of human beings versus infinite mathematical objects 
Throughout the whole history of humanity many brilliant thinkers studied problems related to the idea of infinity (see [Cantor, Cohen, Conway and Guy, Gödel, Hilbert, Robinson] and references given therein). To emphasize importance of the subject it is sufficient to mention that the Continuum Hypothesis related to infinity has been included by David Hilbert as the Problem Number One in his famous list of 23 unsolved mathematical problems that have influenced strongly development of the mathematics in the 20th century (see [Hilbert]).

The point of view on infinity accepted nowadays takes its origins from the famous ideas of Georg Cantor (see [Cantor]) who has shown that there exist infinite sets having different number of elements. Particularly, he has shown that the sets, Q, of rational numbers, Z, of integer numbers, and, N, of natural numbers have the same cardinality which is less than cardinality of the set, R, of real numbers.

However, it is well known that Cantor’s approach leads to some situations that can be viewed as paradoxes. The most famous and simple of them is, probably, Hilbert’s paradox of the Grand Hotel. In a normal hotel having a finite number of rooms no more new guests can be accommodated if it is full. Hilbert’s Grand Hotel has an infinite number of rooms (of course, the number of rooms is countable, because the rooms in the hotel are numbered). If a new guest arrives at the hotel where every room is occupied, it is, nevertheless, possible to find a room for him. To do so, it is necessary to move the guest occupying room 1 to room 2, the guest occupying room 2 to room 3, etc. In such a way room 1 will be available for the newcomer.  Naturally, this paradox is a corollary of Cantor’s fundamental result regarding cardinalities of infinite sets.

There exist different ways to generalize traditional arithmetic for finite numbers to the case of infinite and infinitesimal numbers (see [Benci and Di Nasso, Cantor, Conway and Guy, Loeb and Wolff, Robert, Robinson]).  However, arithmetics developed for infinite numbers are quite different with respect to the finite arithmetic we are used to deal with. Moreover, very often they leave undetermined many operations where infinite numbers take part (for example, infinity minus infinity, infinity divided by infinity, sum of infinitely many items, etc.) or use representation of infinite numbers based on infinite sequences of finite numbers. These crucial difficulties did not allow people to construct computers that would be able to work with infinite and infinitesimal numbers in the same manner as we are used to do with finite numbers.

In fact, in modern computers, only arithmetical operations with finite numbers are realized (see, for example, [Davis, Knuth]). Numbers can be represented in computer systems in various ways using positional numeral systems with a finite radix b. We remind that numeral is a symbol or group of symbols that represents a number. The difference between numerals and numbers is the same as the difference between words and the things they refer to. A number is a concept that a numeral expresses. The same number can be represented by different numerals. For example, the symbols ‘3’, ‘three’, and ‘III’ are different numerals, but they all represent the same number.

Usually, when mathematicians deal with infinite objects (sets or processes) it is supposed (even by constructivists (see, for example, [Markov Jr. and Nagorny])) that human beings are able to execute certain operations infinitely many times. For example, in a fixed numeral system it is possible to write down a numeral with any number of digits. However, this supposition is an abstraction (courageously declared by constructivists in [Markov Jr. and Nagorny]) because we live in a finite world and all human beings and/or computers finish operations they have started. Particularly, even the most simple successor operation y=x+1 cannot be executed for any natural number x because we always work within a fixed numeral system (let say, S), we can execute a finite number of operations, and only with numbers expressible in numerals from S. Thus, if x is expressible in S, to execute the successor operation it is necessary that y is also expressible in S and this is not always true.  
The point of view proposed recently in [Sergeyev] and discussed in this paper does not use this abstraction and, therefore, is closer to the world of practical calculus (together with number theory numerical calculus is among principal scientific interests of the author, see, for example, [Strongin and Sergeyev]) than the traditional approaches. On the one hand, we assume existence of infinite sets and processes. On the other hand, we accept that any of the existing numeral systems allows one to write down only a finite number of numerals and to execute a finite number of operations. Thus, the problem we deal with can be formulated as follows: How to describe infinite sets and infinite processes by a finite number of symbols and how to execute calculations with them?
Of course, due to this declared applied statement, such concepts as bijection, numerable and continuum sets, cardinal and ordinal numbers, and other tools developed by Georg Cantor for treatment of infinite objects are not used in this paper. However, the approach proposed in [Sergeyev]) does not contradict Cantor. In contrast, it evolves his deep ideas regarding existence of different infinite numbers.

The second important point in the new approach is linked to the latter part of the question that has been formulated above, i.e., ‘... how to execute calculations with them?’. In [Sergeyev] a new numeral system that allows us to introduce and to treat infinite and infinitesimal numbers in the same manner as we are used to do with finite ones has been introduced. The words ‘in the same manner’ signify that the philosophical principle of Ancient Greeks ‘the part is less than the whole’ has been applied in this new arithmetic. This means that for x>a>0 it follows x-a<x and x+a>x for any (finite or infinite) values of a and x. This principle, in our opinion, very well reflects organization of the world around us but is not incorporated in traditional infinity theories where it is true only for finite a and x.
In order to illustrate this philosophical principle, let us consider the following situation presented in Figure 1.  Suppose that we subdivide the whole Universe we live in by a plane in two subspaces (left and right) and consider the set of pencils located at the left subspace and the set of pencils being at the right subspace. We indicate by x the number of pencils at the left subspace and by y the number of pencils at the right subspace (see Figure 1,a). We do not know whether our Universe is finite or not, we do not know how many planets there exist in it, and we do not know how many of them produce pencils.  In other words, we do not know whether the numbers x and y are finite or infinite. However, we can observe that when we move one pencil from the left subspace to the right, the number of pencils on the left will be less and will be equal to x-1<x, and the number of pencils on the right will be more and will be equal to y+1>y (see Figure 1,b). In traditional theories where ∞-1=∞ and ∞+1=∞ this is not the case when x and y are infinite. The traditional point of view is not able to describe this situation properly, i.e., to record numerically the operation of the movement and its result and is forced therefore to say that the number of pencils at both subspaces remains the same. Thus, it follows that for infinite x and y the traditional point of view leads to the result x-1=x and y+1=y.

[image: image1.wmf]
Figure 1: After the movement of the pencil from the left subspace to the right, we have on the left one pencil less and on the right one pencil more. 
In order to introduce the new applied approach to infinity let us start by studying situations arising in practice when it is necessary to operate with extremely large quantities (see [Sergeyev] for a detailed discussion). Imagine that we are in a granary and the owner asks us to count how much grain he has inside it. There are a few possibilities of finding an answer to this question. The first one is to count the grain seed by seed. Of course, nobody can do this because the number of seeds is enormous.

To overcome this difficulty, people take sacks, fill them in with seeds, and count the number of sacks. It is important that nobody counts the number of seeds in a sack. At the end of the counting procedure, we shall have a number of sacks completely filled and some remaining seeds that are not sufficient to complete the next sack. At this moment it is possible to return to the seeds and to count the number of remaining seeds that have not been put in sacks (or a number of seeds that it is necessary to add to obtain the last completely full sack).

If the granary is huge and it becomes difficult to count the sacks, then motor lorries or even big train wagons are used. Of course, we suppose that all sacks contain the same number of seeds, all lorries - the same number of sacks, and all wagons - the same number of lorries. At the end of the counting we obtain a result in the following form: the granary contains 26 wagons, 15 lorries, 12 sacks, and 34 seeds of grain. Note, that if we add, for example, one seed to the granary, we can count it and see that the granary has more grain. If we take out one wagon, we again be able to say how much grain has been subtracted.

Thus, in our example it is necessary to count large quantities. They are finite but it is impossible to count them directly using elementary units of measure, u0, (in our example units u0 are seeds) because the quantities expressed in these units would be too large. Therefore, people are forced to behave as if the quantities were infinite.

To solve the problem of ‘infinite’ quantities, new units of measure, u1, u2, and u3, are introduced (units u1 - sacks, u2 – motor lorries, and u3 - train wagons). The new units have the following important peculiarity: it is not known how many units ui there are in the unit ui+1 (we do not count how many seeds are in a sack, we just complete the sack).  Every unit ui+1 is filled in completely by the units ui. Thus, we know that all the units ui+1 contain a certain number Ki of units ui but this number, Ki, is unknown. Naturally, it is supposed that Ki is the same for all instances of the units. We have obtained the following important result: numbers that it was impossible to express using only initial units of measure are perfectly expressible if new units are introduced.
2. A new infinite unit of measure 

The new positional numeral system with infinite radix proposed in [Sergeyev] evolves this idea of counting from large but finite numbers to infinite numbers. Before making this step, let us remind numeral systems used to express finite numbers. Different numeral systems have been developed for this scope. More powerful numeral systems allow us to write down more numerals and, therefore, to express more numbers. However, in all existing numeral systems allowing us to execute calculations, numerals corresponding only to finite numbers are used. Thus, in order to have a possibility to write down infinite and infinitesimal numbers by a finite number of symbols, we need at least one new numeral expressing an infinite (or an infinitesimal) number. Then, it is necessary to propose a new numeral system fixing rules for writing down infinite and infinitesimal numerals and to describe arithmetical operations with them.

Note that introduction of a new numeral for expressing infinite and infinitesimal numbers is similar to introduction of the concept of zero and the numeral ‘0’ that in the past have allowed people to develop positional systems being  more powerful than numeral systems existing before. In modern computers, the radix b=2 with the alphabet { 0,1 } is mainly used to represent numbers. Numerous ways to represent and to store numbers in computers are described, for example, in [Knuth].

A new positional numeral system with infinite radix proposed in [Sergeyev] evolves the idea of separate count of units with different exponents used in traditional positional systems to the case of infinite and infinitesimal numbers. The infinite radix of the new system is introduced as the number of elements of the set, N, of natural numbers expressed by the numeral [image: image2.jpg]


 called grossone. This mathematical object is introduced by describing its properties postulated by the Infinite Unit Axiom consisting of three parts: Infinity, Identity, and Divisibility (we introduce them soon). This axiom is added to axioms for real numbers similarly to addition of the axiom determining zero to axioms of natural numbers when integer numbers are introduced. This means that it is postulated that associative and commutative properties of multiplication and addition, distributive property of multiplication over addition, existence of inverse elements with respect to addition and multiplication hold for grossone as for finite numbers.

Note that usage of a numeral indicating totality of the elements we deal with is not new in mathematics. It is sufficient to remind the theory of probability where events can be defined in two ways. First, as union of elementary events; second, as a sample space, Ω, of all possible elementary events from where some elementary events have been excluded. Naturally, the second way to define events becomes particularly useful when the sample space consists of infinitely many elementary events.
Let us introduce now the Infinite Unit Axiom consisting of three parts: Infinity, Identity, and Divisibility and then comment them.
Infinity. For any finite natural number n it follows  n < [image: image3.jpg]


.

Identity. The following relations  link [image: image4.jpg]


 to identity elements 0 and 1
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=1.

Divisibility. For any finite natural number  n  sets   
Nk,n =  {k, k+n, k+2n, k+3n, … },   1 ≤ k ≤ n,

being the n-th parts of the set, N, of natural numbers have the same number of elements indicated by the numeral [image: image13.jpg]


/n.
The first part – Infinity – is quite clear. In fact, we want to describe an infinite number, thus, it should be bigger than any finite number. The second part of the axiom – Identity – tells us that [image: image14.jpg]


 behaves itself with identity elements 0 and 1 as all other numbers. In reality, we could even omit this part of the axiom because at the moment we have told that grossone is a number, we have fixed usual properties of numbers, i.e., the properties described in Identity but also associative and commutative properties of multiplication and addition, distributive property of multiplication over addition, existence of inverse elements with respect to addition and multiplication.  
The third property – Divisibility – is the most interesting. Let us give first three examples illustrating its meaning. If we take n=1, than N1,1 = N and the property tells that the set, N, of natural numbers has grossone elements. If n=2, we have two sets N1,2 and N2,2
N1,2  = { 1, 3, 5, 7, 9, …},          N2,2  = { 2, 4, 6, 8, 10, …}
and they have [image: image15.jpg]


/2 elements each. If n=3, then we have three sets
N1,3  = { 1, 4, 7,10, …},          N2,3  = { 2, 5, 8, 11, …},      N2,3  = { 3, 6, 9, 12, …}
and they have [image: image16.jpg]


/3 elements each. Thus, the property tells that it is possible to subdivide the set of natural numbers in n equal parts where n is a finite number.

It is important to emphasize that we do not try to count elements k, k+n, k+2n, k+3n, …  in the sets Nk,n. In fact, we cannot do this since our possibilities to count are limited and, therefore, we are not able to count for infinity. In contrast, by using the mentioned above Ancient Greeks’ principle ‘The part is less than the whole’ (see [Benci and Di Nasso, Mayberry, Sergeyev] for detailed discussions on such a kind of approaches) we postulate that the number of elements of the n-th part of the set, i.e., [image: image17.jpg]


/n, is n times less than the number of elements of the whole set, i.e., than [image: image18.jpg]


. In terms of our granary example [image: image19.jpg]


 can be interpreted as the number of seeds in the sack. Then, if the sack contains [image: image20.jpg]


 seeds, its n-th part contains [image: image21.jpg]


/n seeds.

The numbers [image: image22.jpg]


/n have been introduced as numbers of elements of sets Nk,n  thus, they are integer. For example, due to the introduced axiom, the sets
N4,5 = { 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, … }

N3,11 = { 3, 14, 25, 36, 47, 58, 69, 80, 91, 102, 113, 124, 135, … },
have [image: image23.jpg]


/5 and [image: image24.jpg]


/11 elements, correspondingly.

The number of elements of sets being union, intersection, difference, or product of other sets of the type Nk,n is defined in the same way as these operations are defined for finite sets. Thus, we can define the number of elements of sets being results of these operations with finite sets and infinite sets of the type Nk,n. Let us consider three simple examples (see [Sergeyev] for more complex applications). First, we study intersection of the sets N4,5 and  N3,11. It follows immediately from the axiom that

N4,5 ∩ N3,11 = { 14, 69, 124, … } = N14,55
and, therefore, it has [image: image25.jpg]


/55 elements. 
In the second example we consider the union N4,5 U {2,3,4}. Its number of elements is [image: image26.jpg]


/5+2 because the number 4 from {2,3,4} belongs to N4,5. Thus, only two new elements have been united with the set N4,5.
In the last example we consider the set 

A = N2,5 U { 3,5 }  / { 2, 7, 17 }.
It has [image: image27.jpg]


/5-1 elements because two elements have been added to and three have been excluded from the set N2,5 = {2,7,12,17, …} having [image: image28.jpg]


/5 elements.

Let us proceed with discovering new abilities given us by the new number and the new numeral. First of all it is necessary to emphasize that the new numeral [image: image29.jpg]


 allows us to write down the set, N, of natural numbers in the form

N = { 1, 2, 3, 4, … [image: image30.jpg]
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  }
because grossone has been introduced as the quantity of natural numbers (similarly, the number 3 is the number of elements of the set {1, 2, 3}). Thus, [image: image34.jpg]


 is the biggest natural number and infinite numbers … [image: image35.jpg]


-3, [image: image36.jpg]


-2,  [image: image37.jpg]


-1 less than grossone are also natural numbers as the numbers 1,2,3, … They can be viewed both in terms of sets of numbers and in terms of grain. For example, [image: image38.jpg]


-1 can be interpreted as the number of elements of the set N from which a number has been excluded. In terms of our granary example [image: image39.jpg]


-1 can be interpreted as a sack minus one seed.

Note that the set N is the same set of natural numbers we are used to deal with.  The difficulty to accept existence of infinite natural numbers is in the fact that traditional numeral systems did not allow us to see these numbers. Similarly, primitive tribes working with the unary numeral system were able to see only numbers 1, 2, and 3 because they operated only with numerals I, II, III and did not suspect about existence of other natural numbers. 

For these primitive people all quantities bigger than III were just ‘many’ and such operations as II+III and I + III gave the same result, i.e., ‘many’. Note that this happens not because II+III=I+III but due to weakness of this primitive numeral system. This weakness leads also to such results as ‘many’+1=‘many’ and ‘many’+2=‘many’ which are very familiar to us in the context of views on infinity used in the traditional calculus: ∞+1=∞, ∞+2=∞. Introduction of the new numeral, [image: image40.jpg]


, gives us possibility to distinguish within ∞ different infinite numbers in the same way as introduction of roman and positional numeral systems allowed people in the past to substitute the weak and uncomfortable ‘many’ with numbers (and the corresponding numerals) 4, 5, 6, etc.
Now an obvious question arises: Which natural numbers can we express by using the new numeral [image: image41.jpg]


? Suppose that we have a numeral system S for expressing finite natural numbers and it allows us  to express finite numbers belonging to a set NS being a subset of the set, N, of natural numbers. Then, adding [image: image42.jpg]


 to this numeral system will allow us to express also such infinite natural numbers being less or equal to [image: image43.jpg]


 as i[image: image44.jpg]


/n+k and i[image: image45.jpg]


/n-k, where 1 ≤ i ≤ n, and both k and n are from NS (note that since the numbers [image: image46.jpg]


/n are integer, the numbers  i[image: image47.jpg]


/n are integer too). Thus, the more powerful system S is used to express finite numbers, the more infinite numbers can be expressed. This also means that the new numeral system using grossone allows us to express more numbers than traditional numeral systems thanks to the introduced new numerals but, as all numeral systems, it has a limited expressibility.

As an example, let us consider a numeral system Š able to express only numbers 1 and 2 by the numerals ‘1’ and ‘2’ (this system is even simpler than that of primitive tribes which was able to express three natural numbers). If we add to this system the new numeral [image: image48.jpg]


 it becomes possible to express the following natural numbers
1,2,  …   [image: image49.jpg]


/2-2, [image: image50.jpg]


/2-1, [image: image51.jpg]


/2, [image: image52.jpg]
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/2+2,   …   [image: image54.jpg]


-2, [image: image55.jpg]


-1, [image: image56.jpg]


.
In this record the first two numbers are finite, the remaining eight are infinite, and dots show the natural numbers that are not expressible in this numeral system. This numeral system does not allow us to execute such operation as 2+2 or to add 2 to [image: image57.jpg]


/2+2 because their results cannot be expressed in this system but, of course, we do not write that results of these operations are equal, we just say that the results are not expressible in Š and it is necessary to take another, more powerful numeral system.  
Note that we have similar crucial limitations working with sets.  The numeral system Š allows us to define only the sets N1,2 and N2,2 among all possible sets of the form Nk,n because we have only two finite numerals, ‘1’ and ‘2’, in Š. This numeral system is too weak to define other sets of this type. These limitations have a general deep character and are related to all problems requiring a numerical answer (i.e., an answer expressed only in numerals, without variables). In order to obtain such an answer, it is necessary to know at least one numeral system able to express numerals required to write down this answer.

For example, we are not able to answer to the following question: What is the number of all the sets of the type Nk,n? But for any known numeral system S we can give a clear numerical answer to the question being an applied version of the given above theoretical problem: What is the number of the sets of the type Nk,n expressible in S? If the fixed system S is able to express P > 2 finite natural numbers, then it allows us to define [P(P+2)/2] sets Nk,n, 2 ≤ n ≤ P, where [u] is the integer part of u.

The introduction of grossone allows us to obtain the following interesting result: the set N is not a monoid under addition. In fact, the operation [image: image58.jpg]


+1 gives us as the result a number grater than [image: image59.jpg]


. Thus, by definition of grossone, [image: image60.jpg]


+1 does not belong to N and, therefore, N is not closed under addition and is not a monoid. This result is a straightforward consequence of the accepted physical principle ‘the part is less than the whole’.

This result also means that adding the Infinite Unit Axiom to the axioms of natural numbers    defines the set of extended natural numbers indicated as [image: image61.wmf] and including N as a proper subset
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-2, [image: image64.jpg]


-1, [image: image65.jpg]
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2+2,   … }.

Extended natural numbers grater than grossone can also be interpreted in the terms of sets of numbers. For example, [image: image73.jpg]


+2 as the number of elements of the set N U {a, b,} where numbers a and b do not belong to N. The number [image: image74.jpg]


2 can be interpreted as the number of elements of the set of pairs (a,b) where both a and b belong to N. In terms of our granary example [image: image75.jpg]


+2 can be interpreted as one sack plus two seeds and [image: image76.jpg]


2 as a motor lorry. 
Introduction of the new infinite unit of measure allows us to count the number of elements of various infinite sets. For example, the set of integer numbers 

Z = { … -4, -3, -2, -1, 0, 1, 2, 3, 4, … }

has 2[image: image77.jpg]


+1 elements because it contains [image: image78.jpg]


 positive numbers, [image: image79.jpg]


 negative, and zero. Many other examples and applications of this new way to express numbers and to work with them can be found in [Sergeyev]. Particularly, it is shown that it is possible to execute arithmetical operations in a unique framework with finite, infinite, and infinitesimal numbers (it is also possible to express numbers having, for example, infinite, finite, and infinitesimal parts). It is shown that finite numbers are just a simple particular case in this general framework introduced for expressing numbers. Unfortunately, it is not possible to discuss all these topics in a short paper and we just give three examples: the first one shows how infinitesimal numbers can be expressed in the new numeral system; the second example describes how divergent series can be calculated, and the last one shows that Hilbert’s paradox of the Grand Hotel does not take place if one uses our approach.
The simplest infinitesimal number is the number [image: image80.jpg]


-1 = 1/[image: image81.jpg]


 being the inverse element for [image: image82.jpg]


 with respect to multiplication, i.e., 
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-1  = 1.
It is important to emphasize that all infinitesimals are not equal to zero. Particularly, [image: image87.jpg]


-1 > 0 because it is obtained as a result of the division of two positive numbers: 1 and [image: image88.jpg]


. It also has a clear interpretation in our granary example. Namely, if we have a sack and it contains [image: image89.jpg]


 seeds then one sack divided by the number of seeds in the sack is equal to one seed. Naturally, we can execute arithmetic operations with infinitesimal numbers too, for example,  [image: image90.jpg]


-1 + [image: image91.jpg]


-1 =2[image: image92.jpg]


-1 (see [Sergeyev] for a detailed discussion).
Let us give some examples from such an important area as theory of divergent series. We consider two infinite series S1=1+1+1+… and S2=3+3+3+…  The traditional analysis gives us a very poor answer that both of them diverge to infinity. Such operations as S1 - S2 or S1/S2 are not defined.

In our terminology divergent series do not exist. Now, when we are able to express not only different finite numbers but also different infinite numbers, the records S1 and S2 are not well defined. It is necessary to indicate explicitly the number of items in the sum and it is not important is it finite or infinite. To calculate the sum it is necessary that the number of items and the result are   expressible in the numeral system used for calculations. 
Thus, suppose that the sum S1 has k items and the sum S2 has n items:
S1(k) = 1+1+1+…+1,         S2(n)  = 3+3+3+…+3.

Then S1(k)=k and S2(n)=3n. If, for instance, k=n=5[image: image93.jpg]


, then we obtain S1(5[image: image94.jpg]
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 and
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 > 0.
If k=5[image: image101.jpg]
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 and it follows 
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 < 0.
If k=3[image: image110.jpg]
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 and it follows S2([image: image116.jpg]
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) = 0. Analogously, the expression S1(k) / S2(n) can be calculated.

Finally, let us return to Hilbert’s paradox of the Grand Hotel. In the paradox, the number of rooms in the Hotel is countable. In our terminology this means that it has [image: image118.jpg]


 rooms. When a new guest arrives, Hilbert proposes to move the guest occupying room 1 to room 2, the guest occupying room 2 to room 3, etc. Under the Infinite Unit Axiom this procedure is not possible because the guest from room [image: image119.jpg]


 should be moved to room [image: image120.jpg]


+1 and the Hotel has only [image: image121.jpg]


 rooms. Thus, when the Hotel is full, no more new guests can be accommodated - the result corresponding perfectly to the situation taking place in normal hotels with a finite number of rooms. Naturally, this result is a consequence of the philosophical principle of Ancient Greeks ‘the part is less than the whole’.
3. A brief conclusion 

In this paper, a new positional numeral system with infinite radix introduced in [Sergeyev] has been discussed. The following philosophical foundations of this new system have been declared: on the one hand, it is accepted that human beings are able to execute only a finite number of operations; on the other hand, it is accepted existence of infinite mathematical objects and processes. It has been shown that this system allows one to express by a finite number of symbols not only finite numbers but infinite and infinitesimals too. All of them can be viewed as particular cases of a general framework used to express numbers. Moreover, this framework allows one to express numbers having infinite, finite, and infinitesimal parts, numbers having only infinite and infinitesimal parts, etc. 
Arithmetical operations introduced in [Sergeyev] are based on the philosophical principle of Ancient Greeks ‘the part is less than the whole’.  This principle very well reflects the structure of the world we live in and means that when you add a positive a < x to x you have a+x > x and when you subtract a positive a from x you have x-a < x independently of the nature - finite or infinite - of x. In contrast to many traditional points of view on infinity, the new numeral system realizes completely the declared principle and has a unique structure independently of the type of number (finite, infinitesimal, or infinite) your work with.

It is necessary to emphasize that the philosophical triad - researcher, object of investigation, and tools used to observe the object - existing in such natural sciences as physics and chemistry exist in mathematics too. In natural sciences, the instrument used to observe the object influences results of observations. The same happens in mathematics studying numbers and objects that can be constructed by using numbers. Thus, numeral systems used to express numbers are instruments of observations used by mathematicians. Usage of powerful numeral systems gives a possibility to obtain more precise results in mathematics in the same way as usage of a good microscope gives a possibility to obtain more precise results in physics.
Physicists choose for their observations an instrument and then obtain a result depending on accuracy of the instrument. The same happens in mathematics. At the moment we have chosen a numeral system to execute our calculations we have chosen the accuracy of the calculus because we are not able to execute computations more precise than those allowed us by the chosen numeral system. The new numeral system introduced in this paper is significantly more powerful than traditional ones but it has this limitation too, since this situation holds for all numeral systems. 
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